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Abstract. Human action recognition in videos is a challenging and sig-
nificant task with a broad range of applications. The advantage of the
visual attention mechanism is that it can effectively reduce noise interfer-
ence by focusing on the relevant parts of the image and ignoring the irrel-
evant part. We propose a deep visual attention model with reinforcement
learning for this task. We use Recurrent Neural Network (RNN) with
Long Short-Term Memory (LSTM) units as a learning agent. The agent
interact with video and decides both where to look next frame and where
to locate the most relevant region of the selected video frame. REIN-
FORCE method is used to learn the agent’s decision policy and back-
propagation method is used to train the action classifier. The experimen-
tal results demonstrate that this glimpse window can focus on important
clues. Our model achieves significant performance improvement on the
action recognition datasets: UCF101 and HMDB51.
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1 Introduction

Action recognition is a prominent research area in video understanding, which
can be applied to many applications such as video surveillance, human-computer
interaction, human behavior understanding, etc. Though significant progresses
have been made [2,17,20,23], action recognition still remains a challenging task
due to intra-class variations, background complexity, high-dimensional feature
description, and other difficulties.
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Previous research in action recognition focus on Bag of Words (BoW) model
based on shallow high-dimensional encodings of local features. Local feature vec-
tor of the video is commonly expressed by Motion Boundary Histogram (MBH),
Histogram of Oriented Gradient (HOG), and Histogram of Optical Flow (HOF),
etc. Improved Dense trajectories (IDT) feature [20] is a new local visual fea-
ture by combining trajectory shape descriptor, HOG, HOF and MBH, which is
superior to other local feature in the most challenging video datasets.

Recently, Convolutional Neural Network (CNN) have show a great ability to
produce a rich representation of the image and have highly successful in image
understanding, such as image classification, object detection, image segmenta-
tion. Classifying videos instead of images adds a temporal information to the
model of image classification. Wang et al. [21] extend convolutional kernel to
multiple video frames to extract temporal information. Although they achieve
great performance, much temporal information is still missing. LSTM have also
been used to learn an effective representation of videos [15,19], which has been
proven to be effective for action recognition task from video sequences. There
are many approaches also tend to have CNN underlying the LSTM and clas-
sify sequences directly or do temporal pooling of features prior to classification
[3]. For the target object is not in a fixed position, the policy of sampling in a
fixed area is difficult to adapt to video frame sequences with large time span.
Xu et al. [26] try to solve the problem by visual salient region boundary based
dense sampling strategy. These salient regions model are not obtained for action
recognition task and do not take full advantage of supervise information.

Attention mechanisms have become an integral part of compelling sequence
modeling in mangy tasks. The most important function of selective visual atten-
tion is to quickly turn our attention to objects of interest in the visual environ-
ment. This ability to focus on regions in cluttered visual scenes is of evolutionary
significance. The key instinct is that humans do not immediately focus on the
whole scene, but rather focus on the sequential parts of the scene to extract rel-
evant information. The process of action recognition is continuous and iterative
observation and refinement. This paper draws inspiration from works that have
used REINFORCE to learn spatial glimpse policy for image classification [1,14],
and to learn temporal glimpse policy for action detection [27].

Main contributions of this work are: (1) We directly estimate the next video
frame location and next retina region based on current and historical information
by reinforcement learning method. (2) The next glimpse location is relative to
the current position instead of the whole image.

2 Related Work

Two-stream convolutional network model combines the predictions of two con-
volutional neural networks: one trained on single video frames and the other
trained on short sequences of dense optical flow images [17]. This deep architec-
ture is competitive with the classical shallow representations in spite of being
trained on relatively small datasets. On this basis, researchers have proposed
more improved models [5,7,22,24]. Karpathy et al. [9] used a multi-resolution
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CNN architecture to perform action recognition in videos. ARTNet architecture
to are constructed by stacking multiple generic building blocks, whose goal is
to simultaneously model appearance and relation from RGB input in a sepa-
rate and explicit manner [23]. Using reinforcement learning, Ji et al. [8] separate
human action to several patterns and learn temporal transition expected values
in activity sequences.

Attention networks were originally proposed on the basis of the REINFORCE
algorithm, that is called hard attention. Soft attention mechanisms were pro-
posed by using weighted averages instead of hard selections. Long et al. [13] pro-
pose a local feature integration framework based on multimodal soft-attention
clusters, and introduce a shifting operation to capture more diverse signals.
VideoLSTM based on soft attention LSTM is an end-to-end sequence learning
model [12]. Girdhar et al. [6] introduce soft-attention pooling model to action
recognition and human object interaction tasks. Soft-attention model is also used
in action recognition. Sharma et al. [16] propose a soft attention based model for
the task of action recognition in videos, which learns which parts in the frames
are relevant for the task at hand and attaches higher importance to them and
classifies videos after taking a few glimpses. Zhang et al. [28] propose a novel
attention mechanism that leverages the gate system of LSTM to compute the
attention weights, which is embedded in a recurrent attention network that can
explore the spatial-temporal relations between different local regions to concen-
trate important ones.

RAM model based on a recurrent neural network is capable of extracting
information from an image or video by adaptively selecting a sequence of regions
or locations and only processing the selected regions at high resolution; While the
model is non-differentiable, it can be trained using reinforcement learning meth-
ods to learn task-specific policies [14]. DRAM extends attention based model for
recognizing multiple objects in images [1]. Xu et al. [25] use both soft attention
and hard attention mechanisms to describe the content of images. Yeung et al.
[27] formulate the hard attention model as a recurrent neural network based
agent that interacts with a video over time and decides both where to look next
and when to emit a prediction for action detection task.

3 The Method

Our task is to take a long sequence of video as input and predict any class labels
of a given human action. Figure 1 shows the model structure. At each time step,
the RNN as an agent processes the glimpse from one video frame, integrates
information over time, and chooses how to act and how to locate next frame and
get glimpse at each time step.

3.1 Architecture

The architecture is built around a RNN, which consists of four main components:
an observation network, a convolutional neural network, a recurrent network
and a prediction network. The observation network is used to select video frame
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and choose focusing image patch. The image patch is then sent to the CNN,
which is responsible for transforming this two-dimensional images patch into
one-dimensional feature vector. RNN is the core component and used to process
feature vector sequences from CNN. The prediction network takes the current
state of RNN as input and makes a prediction on when and where to extract the
next video frame patch for the observation network. We explain how we use a
combination of back-propagation and REINFORCE method to train the model
in end-to-end fashion.

Fig. 1. Model architecture.

Observation Network. At each step t the agent receives a image patch from
one video frame. The agent does not have full access to the video frame but rather
can extract information by focusing on particular region. The location of this
region is determined by two parameters: lt and dt. At training time, the location
d

′
t of observation next frame is sampled from Gaussian distribution with a mean

of dt and a fixed variance; at test time, the maximum a posteriori estimate is
used. When the value of d

′
t goes beyond the range [0, 1], we clip it by 0 or 1.

We define D as maximum span which is the number of frames that observation
network can be skipped. Given next frame location of d

′
t, we get d = d

′
t · D, this

means we can skip d + 1 frames to get the next frame. Similarly, the location l
′
t

of observation region center is sampled from Gaussian distribution with a mean
of lt and a fixed variance. The difference between the two parameters is that d

′
t

is a scalar and l
′
t is a two-dimensional vector. The l

′
t represent horizontal and
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vertical position relative to the previous retina region. The range of value of
l
′
t is {[−1, 1] , [−1, 1]}. We set the L as maximum pixel distance from reference
position. Given next glimpse location of l

′
t and the coordinates ct−1 in the image

of previous image patch, we get l = l
′
t · L. This means that the center position

of the next glimpse region location is l + c
′
t−1.

Convolutional Network. In our implementation, we choose the configurations
similar to two-stream CNN [17] due to their good performance on the challenging
datasets. The CNN structure from the first to the fifth layer is similar to spatial
stream ConvNet [17], except the first layer’s stride equal 1. Using shorthand
notation, the CNN configuration is C1(96, 7, 1)−N1−P1(2, 2)−C2(256, 5, 2)−
N2−P2(2, 2)−C3(512, 3, 1)−C4(512, 3, 1)−C5(512, 3, 1)−P5(2, 2)−FC6(1024).
where C#(c, k, s) indicates a convolutional layer with c filters of spatial size k×k,
applied to the input with stride s. P#(k, s) is max pooling layer with spatial
size k × k and stride s. FC#(n) is a fully connected layer with n nodes. N#
is local response normalization layer described in Krizhevsky et al. [10] and use
the same parameters: k = 2, n = 5, α = 10−4, β = 0.5. The Rectified Linear
Units (ReLU) activation function is applied to the output of every convolutional
and fully-connected layer. The final layer is connected to LSTM cell as frame
presentation feature vector. Except the FC6 layer, the parameter values of the
other layers using the existing values from the model of [17].

Recurrent Network. The video can be taken as a sequence frames, We use
the LSTM implementation in [25], which is given as follows;

it = σ (Wi · [ht−1, xt] + bi)
ft = σ (Wf · [ht−1, xt] + bf )
ot = σ (Wo · [ht−1, xt] + bo)
gt = tanh (Wg · [ht−1, xt] + bg)
ct = ft � ct−1 + it � gt

ht = ot � tanh (ct)

where it is the input gate, ft is the forget gate, ot is the output gate, band
ct is the cell state, ht is the hidden state, and the vector xt is the input to the
LSTM at time-step t. The xt is the CNN feature representation vector, capturing
the visual information associated with a particular input glimpse. σ and � be
the logistic sigmoid activation and element-wise multiplication respectively. The
trainable parameters are weight matrices W and biases vectors b.

Prediction Network. This network acts as a controller that directs attention
based on the current internal states from the RNN. As the agent reasons on a
video, four outputs are produced at each timestep: temporal location dt indicat-
ing the frame to observe next. spatial location lt indicating the glimpse region. pt

represents the classification results of the prediction; Whether in the training or
testing stage, only the last unit output pt is used. bt is just an auxiliary output.
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Loaction of Next Frame: The temporal location dt ∈ [0, 1] indicate the video
frame location that the agent chooses to observe. The next video frame location
dt is relative to current frame location lt−1. The difference from [27] is that our
agent only skip forwards a video, which is more consistent with human’s cognitive
habits and more easier to handle online. The dt is computed as dt = fd(ht, θd),
where the fd is a fully connected layer, such that the agent’s decision is a function
of its past observations and current observation.

Location of Next Observation Region: The spatial location lt ∈ [−1, 1]
is a two-tuples, which is computed as lt = fl(ht, θl), where the fl is a fully
connected layer with parameters θl. The elements of the two tuples correspond
to the coordinates of the focusing region center relative to the previous location.
The parameters of θl are a two-dimensional matrix and a biases vector.

Classifier of Video: Our task is to recognize the human action category in
videos, So we need a classifier for this task. pt = fp(ht, θp), where fp is a fully
connected hidden layer with parameters θp followed by a softmax output layer. In
course of training, we use softmax loss as its loss function and back-propagation
method to update parameters θp. Whether in the course training or testing, his
component outputs the result only at the final timestep.

Baseline of State Value: In reinforcement learning, it is generalized to include
a comparison of the action value to an arbitrary baseline b(s). The choice of the
baseline does not affect the expected update of the algorithm, but it does affect
the variance of the update and thus the rate of convergence. bt = fb(ht, θb), where
fb is a fully connected layer with parameters θb. Taken the cumulative reward
R as reference value, we use back-propagation method to update parameters
θb, but gradient is not transferred to the RNN layer. In course of testing, this
component is not used.

3.2 Training

The observation location outputs {lt, dt} are non-differentiable components of
our model that cannot be trained with standard back-propagation. The param-
eters of our agent are given by the {θl, θd} parameters of the prediction network.
After executing an action the agent receives a new visual observation of the
video frame vt and obtains a reward rt. The goal of the agent is to maximize
the cumulative reward which is usually very sparse and delayed: R =

∑T
t=1 rt.

In this paper, our goal is to make a correct classification of the videos. So we set
rT = 1 if the action is classified correctly after T steps and 0 otherwise.

The above setup is a special instance of what is known in the RL community
as a Partially Observable Markov Decision Process (POMDP). The true state
of the environment is unobserved. In this view, the agent needs to learn a policy
π((lt, dt)|s1:t; θ) with parameters θ that, at each step t, maps the history of
past interactions with the environment s1:t = x1, l1, d1, ..., xt−1, lt−1, dt−1, xt to
a distribution over actions for the current time step, subject to the constraint of
the observation network. In this paper, the policy πθ is defined by the prediction
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Algorithm 1. Prediction Network Parameters Algorithm
Input: differentiable policy π (lt|ht, θl) , π (dt|ht, θd),step size λ

Initialize policy parameters θ
1: δl ← 0, δd ← 0
2: for m = 1 → M do
3: if (argmax(pT ) == y) then
4: Rm ← 1
5: else
6: Rm ← 0
7: end if
8: for t = 1 → T do
9: δm

R ← Rm − bm
t

10: δl ← δm
R ∇θl lnπ (lmt |hm

t , θl)
11: δd ← δm

R ∇θd lnπ (dm
t |hm

t , θd)
12: end for
13: end for
14: θl ← θl + λδl, θd ← θd + λδd

network outlined above, and the history st is summarized in the state of the
hidden units ht. Give an agent interacting with a video, πθ is the agent’s policy.
The objective function of learning distribution over actions conditioned on the
interaction sequences is defined as:

J (θ) = E

((
T∑

t=1

rt

)

;πθ

)

=
∑

s

π (s, θ)R

where s is interaction sequence obtained by running the current agent πθ, R
is the sum of rewards, π (s, θ) is the agent’s policy,

∑

s
π (s, θ) represents aver-

aging multiple sequences. The aim of reinforcement learning is to find the best
parameter θ to maximize the objective function J(θ). The process of finding
the optimal parameter θ is to find the optimal policy or the optimal path. The
above problem is essentially an optimization problem. The simplest and most
commonly used method is the gradient descent method. That is:

θnew = θold + λ∇J (θ)

The gradient of the object function is:

∇θJ (θ) = ∇θ

∑

s
π (s, θ)R

=
∑

s
∇θπ (s, θ)R

=
∑

s
π (s, θ) ∇θπ(s,θ)R

π(s,θ)

=
∑

s
π (s, θ)R∇θ log π (s, θ)
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The upper formula is equivalent to the R∇θ log π (s, θ) expectation. This
expression can be estimated by Monte Carlo sampling, that is, we get multiple
episodes according to the current policy. So, the approximation is:

∇θJ (θ) ≈ 1
M

M∑

m=1

Rm∇θ log π (sm, θ)

The π (s, θ) is probability of T timesteps episode, which is represents as:

π (s, θ) =
T∏

t=1

π (st, θ)

Then, the gradient of object function is:

∇θJ (θ) ≈ 1
M

M∑

m=1

T∑

t=1

Rm∇θ log π
(
sm

t
, θ

)

To reduce the variance of the gradient estimate, a baseline reward bm
t is often

estimated, e.g. via b = fb (ht, θb) in prediction network, and subtracted so that
the gradient equation becomes:

∇θJ (θ) ≈ 1
M

M∑

m=1

T∑

t=1

(Rm
t − bm

t ) ∇θ log π
(
sm

t
, θ

)

where Rm
t =

∑T
n=t rm

n is the cumulative reward obtained from t step to T step.
In this paper Rm

t = Rm. And bm
t is the estimated value at the ht state of the

mth episode. Due to π (θ) = π (θd) π (θl), we get:

∇θ log π (s, θ) = ∇θd
log π (s, θd) + ∇θl

log π (s, θl)

Since π (s, θd) is Gaussian distribution, we get:

∇θd
log π (s, θd) =

(
l
′
d

− ld

)

σ2

Here ld is prediction output, that is taken as mean of this Gaussian distribution.
l
′
d is the sampled value. As a hyper-parameter, σ is the fixed variance of this
Gaussian distribution. In the same way, we can calculate the ∇θl

log π (s, θl).
The resulting algorithm increases the log-probability of an action that was

followed by a larger than expected cumulative reward, and decreases the log-
probability if the cumulative reward was smaller. After update {θl, θd} param-
eters, other parameters under the prediction network, e.g. (W, b) of RNN and
FC6 of CNN, are updated using back-propagation, because they are differen-
tiable. Besides the policy optimization, we also need to optimize the classifier,
whose loss function of classifier is defined as softmax loss. To update baseline
parameter θb, we define its loss function as Euclidean loss. The baseline gradient
does not propagate backward to the next layer. Algorithm 1 shows the basic
process of gradient descent method. In experiments, we actually use stochastic
gradient descent algorithm.
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Fig. 2. Sample frames from different actions datasets. (a) UCF101 (b) HMDB51

4 Experiments

In this section, we evaluate performance of the proposed method for action recog-
nition on two action data sets, and compare it with previous methods in litera-
ture. The experiments were doing in two datasets that are the most challenging
datasets in recently. The performance of the action recognition is evaluated by
the average precise. Some example frames are illustrated in Fig. 2.

4.1 Datasets

The UCF101 dataset [18] has 101 action categories and contains 13,320 videos,
consisting of realistic videos taken from YouTube ranging from general sports
to daily life exercises, with each category containing at least 100 clips. The
dataset is particularly interesting because it gives the largest diversity in terms
of actions and with the presence of large variations in camera motion, object
appearance and pose, object scale, viewpoint, cluttered background, illumination
conditions, etc. There are three splits for training and testing (70% training and
30% testing).

The HMDB51 dataset [11] collects video clips in abundant source, both
from movies and Internet, there are 6,766 videos and 51 action categories in total.
We follow the original protocol using three train-test splits. For every class and
split, there are 70 videos for training and 30 videos for testing. We report average
accuracy over the three splits as performance measure on the original videos.

4.2 Implementation Detail

All the videos in the datasets, the observation image patch is 76 × 76. For the
RNN, the LSTM cell has 512 hidden units. The agent is given a fixed number
of observations for each episode, typically T = 10 in our experiments. We train
model by using stochastic gradient descent optimization algorithm with mini-
batches of size 128 episodes and momentum of 0.9, weight decay of 0.0005,
initial learning rate of 0.001. Other hyper-parameters were selected using random
search. In this paper, we set the D = 10, the L = 70, the Gaussian distribution
variance fixed 0.1.
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4.3 Comparison to Baseline

We train our model only using RGB video frames, not using optical flow data.
The CNN model [17] and CNN+LSTM model [3] are taken as baseline. As can
be seen from Table 1, our model obtains robust improvements over the baseline
on UCF101 and HMDB51. The result of the experiment demonstrates that the
hard attention approach can decrease the irrelative visual information influence
and increase the correctness of classifier.

Table 1. Comparison to baseline on the UCF101 and HMDB51 data sets.

Model UCF101 HMDB51

RGB RGB+Flow RGB RGB+Flow

CNN (Two Stream Network) [17] 73.0 88.0 40.5 59.4

CNN+LSTM [3] 68.2 82.7 - -

Our Hard-attention Model 93.2 - 66.8 -

4.4 Comparison to State-of-the-Art

Finally, we compare our method against the state-of-the art models. As shown in
Table 2, our model can achieve competitive results in comparison with existing
published methods. Our results are closed to the [2,13,23] which used much
larger pre-train data sets. It is also interesting to observe that in some cases, the
model is able to attend to important objects in the video frames and attempts to
track them to some extent in order to correctly identify the performed activity.

Table 2. Action Recognition mAP (%) on the UCF101 and HMDB51 data sets.

Model UFC101 HMDB51 Year Pre-train dataset

IDT [20] 72.4 40.2 2013 None

Two Stream Network [17] 88.0 59.4 2014 ImageNet

CNN+LSTM [3] 82.7 - 2015 ImageNet

Spatial TDD [22] 82.8 50.0 2015 ImageNet

CNN+LSTM fusion [5] 92.5 65.4 2016 ImageNet

Spatial Stream ResNet [4] 82.3 43.4 2016 ImageNet

TSN Spatial Network [24] 86.4 53.7 2016 ImageNet

RGB-I3D [2] 95.6 74.8 2017 ImageNet+Kinetics

ARTNet with TSN [23] 94.3 70.9 2018 Kinetics

Attention Cluster RGB+Flow [13] 94.6 69.2 2018 Kinetics

Our Hard-attention Model 93.2 66.8 2018 ImageNet
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5 Conclusion

In this paper, we have proposed reinforcement learning method for action recog-
nition in videos, which aims to select the most informative frames and the retina
region of the input sequences. because of the stochasticity in the glimpse policy
during training, The hard-attention based model is less prone to over-fitting than
common deep model. Our architecture should be applicable to related tasks such
as action localization and detection in video. In terms of future work, we hope
to add optical information for prediction of next frame location.
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